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Abstract

This paper addresses a major methodological issue of Agent-Based (AB) models
which has prevented them from being accepted by the mainstream research commu-
nity. Any scienti�c model or theory has to be testable for example by comparing
predictions which are contingent on the model against empirical observations. If they
coincide the model can be considered as provisionally true, else it is falsi�ed and at
least one of the model axioms is false. However, in order to derive testable impli-
cations a meaningful calibration and estimation procedure is required, and this issue
has been given relatively little attention in the AB literature. This paper introduces
and examines an estimation procedure for AB models which is based on a statistical
methodology called Empirical Likelihood.
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1 Introduction

Although Agent-Based models (AB models) have become increasingly popular in Finance

research (see (Chiarella et al., 2009) and (Wagener and Hommes, 2009) for a review) its

empirical validation is still an open issue. In general the data generating process of AB

model outcomes are not analytically tractable, therefore standard techniques such as em-

pirical likelihood or generalized method of moments cannot be applied for calibration and

estimation. In fact, the principal approach to validate a model by assessing its ability to

explain empirical phenomena by �nding the parameter con�guration that best matches

empirical facts e.g. by minimising the �distance� of the model outcomes with respect to

the empirical counterpart, measured by an objective function, has various methodological

issues in the context of AB models. In particular, it is not clear which empirical coun-

terparts and distance measure should be chosen (Fagiolo et al., 2007) and even with a

particular choice, there is a fundamental problem comparing AB results with empirical

observations. AB models as a Monte Carlo based simulation technique produce multiple

realised samples that have to be compared to a single empirical observation and therefore

any calibration method of AB models has to deal with Monte Carlo variance introduced

by the simulation. As a consequence minimising the distance of an AB model, given a

speci�c distance measure with respect to a speci�c empirical observation, results in �nding

an optima of an approximated, stochastic objective function (Winker et al., 2007) which in

turn requires robust optimisation techniques. Therefore the following aspects need careful

inspection:

1. Choice of the objective function:

(a) Choice of empirics that the AB model is calibrated against

(b) Choice of distance measure of the simulation outcome to its empirical counter

part

2. Choice of the optimisation technique

For a meaningful calibration or estimation these choices should enable a discrimination of

the considered AB model amongst di�erent parameter settings in the presence of Monte
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Carlo variance and eventually should help to compare di�erent AB models. Current liter-

ature on calibration of �nancial AB models have proposed two approaches:

1. SMM: Simulated Method of Moments (see (Du�e and Singleton, 1993), (Franke,

2009), (Winker et al., 2007)),

2. IIM: Indirect Inference Method (see (Gourieroux et al., 1993))

All these approaches calibrate AB models against stylized facts of �nancial time series

that are described by some empirical moments or statistics (here we denote d empirical

moments shortly with ye = (me
1, . . . ,m

e
d)), however using di�erent �distance� measures.

Generically a �nancial AB model produces for each simulation run i = 1, . . . , n and to a

given parameter con�guration vector γ a sample (price) path

xit∈[0,T ] (γ)

or

xt∈[0,T ] (ωi) (γ) ,

ωi ∈ Ω stressing that the sample path is also a realization of the random generators

embedded in the simulation. Corresponding to the empirical moments or statistics ye

the AB model provides for each simulation run i = 1, . . . , n and parameter setting γ a

simulated moment yi:

xit∈[0,T ] (γ)→ yi (γ) =
(
mi

1 (γ) , . . . ,mi
d (γ)

)
.

Given this population of simulated moments the SMM minimises

min
γ

(
1

n

n∑
i=1

(yi (γ)− ye)

)′
D

(
1

n

n∑
i=1

(yi (γ)− ye)

)
,

which is the weighted mean square error of the simulated moments against the empirical

moment with respect to γ and weight matrix D. In other words the SMM minimises the

weighted average distance of the simulated moments to its empirical counterpart. The

IIM minimises the distance between simulator outcome and empirical observation using
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an auxiliary model, that ideally captures all salient features of the data while having a

closed form representation, allowing the use of conventional estimation procedures (e.g.

maximum likelihood or generalized method of moments). Suppose there is a one to one

mapping function c between the auxiliary model parameter vector λ and the simulator pa-

rameter vector γ: λ = c (γ), then the IIM minimises the the distance between the estimate

λe, obtained by estimating the auxiliary model with empirical observations, and λy the

estimate of the auxiliary model with simulation outcome with con�guration γ.

Because the SMM is merely a curve �tting procedure and the IIM approach su�er a

drawback of using an auxiliary model, inducing a source of arbitrariness, we will employ

the statistical approach introduced in (Owen, 1990), called empirical likelihood. It is the

nonparametric analogue of the parametric likelihood and as its counterpart it provides

e�cient estimators and con�dence intervals for hypothesis testing. Similar to the classic

likelihood it allows us to compute the likelihood of a hypothesis H : θ = θH given a sample

Y1, .., Yn, where the hypothesis can be formulated for any parameter θ = T (F ) , where T

is a function of the unknown distribution F. Let W (θH) (as in (7)) denote the empirical

likelihood of observing θH given a speci�c sample Y1, .., Yn. In the given AB context

we get for each γ a population of moments: Y1 (γ) , .., Yn (γ) iid according to a common

Fγ , then Wγ (θH) denotes the empirical likelihood of observing θH for a given sample

Y1 (γ) , .., Yn (γ). Naturally, the idea for calibrating or estimating the AB model could be,

for example, to maximize the likelihood of the average simulated moment µγ = EFγ [Y (γ)]

to observe the empirical moment ye = (me
1, . . . ,m

e
d) = µe; that is we search for a parameter

con�guration γ̂ such that:

γ̂ = argmax
γ

[Wγ (µe)] .

In other words we look for the con�guration γ̂ of the AB model at which we (on average)

most likely observe the empirical moments. In contrast to existing literature, we measure

the average distance between simulated and empirical moments in terms of likelihood. The

advantage is that the empirical likelihood is general in nature and can be formulated for

any θ = T (F ) . For example we would not only be interested in the con�guration of our

AB model that most likely observes the empirical moments or statistics on average but
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could also require that the simulated moment population has a certain required variance

σ2
r . In this case θH =

(
µe, σ

2
r

)
and the calibration or estimation problem amounts to

γ̂ = argmax
γ

[Wγ (θH)] .

In fact, as it is shown later (see Theorem 2 and 3), the empirical likelihood and its properties

can be extended to any additional information or requirement on θ = T (F ) of the form

g (Y, θ), as long as EF [g (Y, θ)] = 0 holds, that is we have some unbiased estimation

equations g (Y, θ).

The reminder of this paper is devoted to investigate the capability of the proposed AB

estimation, which is from the procedural point of view a sequence of hypothesis tests using

a �xed hypothesis θH for di�erent data sets y1 (γ) , .., yn (γ), generated with an AB model

at di�erent con�gurations γ. However, before we investigate the potential of this approach

in a simple experiment, the next section discusses Empirical Likelihood in detail. Section

3 extends the Balanced Adjusted Empirical Likelihood (BAEL) proposed in (Emerson

and Owen, 2009) for the general setting EF [g (Y, θ)] = 0; BAEL is a modi�ed empirical

likelihood that primary allows an algorithmic-stable execution of the proposed estimation

procedure in the test case. The results are reported in Section 4 and the last Section

concludes..

2 Empirical Likelihood

Empirical likelihood was introduced in (Owen, 1990) as a nonparametric analogue to the

parametric likelihood estimation, allowing hypothesis testing and con�dence interval con-

struction among others for the mean of an unknown distribution F. The empirical likelihood

function is de�ned as follows.

De�nition 1. Given Y1, .., Yn ∈ Rd iid with common F . The nonparametric likelihood of

F is

L (F ) =

n∏
i=1

[F (yi)− F (yi−)] (1)

where F (y−) = P (Y < y) and F (y) = P (Y ≤ y) thus P (Y = y) = F (y)− F (y−) .
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Remark 1. L (F ) is the probability of getting exactly the sample values Y1, . . . Yn from the

cumulative distribution function (CDF) F . If F is continuous L (F ) = 0 and in order to

have a positive nonparametric likelihood, a distribution F must place a positive probability

on each observed data point Y1, . . . Yn.

The nonparametric likelihood is maximized by the empirical cumulative distribution

function (ECDF)

Fn (y) =
1

n

n∑
i=1

1{Yi<y}.

The likelihood ratio is given by

R (F ) =
L (F )

L (Fn)
. (2)

For a distribution F that places probability wi on the value Yi we get:

R (F ) =

∏n
i=1wi∏n
i=1

1
n

=
n∏
i=1

nwi. (3)

To obtain the con�dence interval for the mean µ = EF [Y ] we de�ne the pro�le empirical

likelihood ratio function by

R (µ) = sup

{
n∏
i=1

nwi|
n∑
i=1

wiyi = µ,

n∑
i=1

wi = 1, wi > 0

}
. (4)

Following the derivation in (3) the denominator pro�le empirical likelihood ratio function

can be interpreted as the likelihood of the observed mean under empirical distribution∏n
i=1

1
n and the numerator is the maximized likelihood for a distribution F that is sup-

ported on the sample and satis�es EF [Y ] = µ. The log empirical likelihood function is

W (µ) = −2 logR (µ) . (5)

Theorem 1. Let Y1, .., Yn ∈ Rd iid with some unknown distribution F0. Let µ0 be the true

mean that is EF0 [Y ] = µ0, furthermore Σ = V arF0 [Y ] < ∞ with rank q > 0. Then as

n→∞ we have

W (µ0)
d→ χ2q
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as n→∞.

Proof. (Owen, 1990)

Therefore a 100 (1− α) % empirical likelihood con�dence interval is formed by taking

the values µ for which W (µ) ≤ χ2
q,1−α. The probability that the true mean µ0 is in this

interval approaches 1− α since

P
(
W (µ0) ≤ χ2

q,1−α
)
→ 1− α

as n → ∞, hence the con�dence interval is a limiting con�dence interval. In fact in

(Qin and Lawless, 1994) it is shown that this type of nonparametric hypothesis testing

and con�dence interval construction can be done for any parameter θ = T (F ) for some

function T of F , while accounting for additional information on θ and F given by l unbiased

estimation function gj (Y, θ) , j = 1, . . . , l or in vector form:

g (Y, θ) = (g1 (Y, θ) , . . . , gl (Y, θ))
′

with

EF [g (Y, θ)] = 0.

Then the pro�le empirical likelihood ratio function becomes

R (θ) = sup

{
n∏
i=1

nwi|
n∑
i=1

wig (Yi, θ) = 0,

n∑
i=1

wi = 1, wi > 0

}
(6)

and

W (θ) = −2 logR (θ) . (7)

Remark 2. Choosing Y −µ for g (Y, θ) we get the original formulation as in (4), (5) . And

as mentioned above
∏n
i=1wi is maximized by the ECDF Fn and it follows that R (θ) is

maximized with respect to θ at θ̂ = gn = 1
n

∑n
i=1 gi and W

(
θ̂
)

= 0.

The con�dence interval for this likelihood ratio function can be found by using
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Theorem 2. Let Y1, .., Yn ∈ Rd iid with some unknown distribution F0. For θ ∈ Θ ⊆ Rp let

g (Y, θ) ⊆ Rl. Let θ0 ∈ Θ be the true parameter that satis�es EF0 [g (Y, θ0)] = 0, furthermore

V arF0 [g (Y, θ0)] <∞ with rank q > 0. Then as n→∞ we have

W (θ0)
d→ χ2q

as n→∞.

Proof. (Qin and Lawless, 1994)

In practical terms however the empirical likelihood approach has various issues. As

mentioned above since the constructed con�dence interval is only a limiting con�dence

interval, the empirical likelihood needs some improvement for small samples. From the

algorithmic point of view di�culties arise due to the fact that computing the empirical

likelihood function in equation (4) and (6) involves solving a constrained maximization. In

fact the right hand side of (6) only has a solution provided that the zero vector is an interior

point of the convex hull of {g (Yi, θ) , i = 1, . . . , n} and an explicit expression for R (θ) and

W (θ) can be derived using Lagrange multipliers: the maximum of
∏n
i=1 nwi subject to

the constraints
∑n

i=1wig (Yi, θ) = 0,
∑n

i=1wi = 1 and wi > 0, i = 1 : n is attained at

ŵi =

(
1

n

)
1

(1 + λ′g (Yi, θ))
,

where λ ∈ Rl is the Lagrange multiplier satisfying

n∑
i=1

g (Yi, θ)

(1 + λ′g (Yi, θ))
= 0, (8)

therefore

R (θ) =
n∏
i=1

1

{1 + λ′g (Yi, θ)}
(9)

and

W (θ) = −2
n∑
i=1

log
{

1 + λ
′
g (Yi, θ)

}
. (10)
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In summary, for a given sample Y1, .., Yn the empirical likelihood function is only de�ned

over a speci�c region Θ when zero is in the convex hull of {g (Yi, θ) , i = 1, . . . , n} , but

for any θ /∈ Θ there is no information available which is problematic when trying to �nd

an initial or the maximum value, which is essential for the estimation purpose. In order

to resolve these issues (Chen, 2008), (Emerson and Owen, 2009) have proposed modi�ed

empirical likelihood functions. Both rely on the idea adding sample point(s) such that

the zero vector becomes an interior point of the convex hull of {g (Yi, θ) , i = 1, . . . , n},

thus the empirical likelihood is de�ned for every θ ∈ Rp, while retaining the distributional

convergence of the log empirical likelihood function. Whereas in (Chen, 2008) the approach

is developed for the general case (as in (6), (7)),(Emerson and Owen, 2009) focuses on the

special case for g (Y, θ) = Y −µ. Since (Emerson and Owen, 2009) has demonstrated better

small sample properties (at least for g (Y, θ) = Y −µ) the next section is devoted to extend

this approach for the general case.

3 Balanced Adjusted Empirical Likelihood for Estimating Equations

Subsequently we de�ne gi = g (Yi, θ) and the following quantities:

gn =
1

n

n∑
i=1

gi,

S =
1

n

n∑
i=1

gig
′
i,

v = gn − 0,

r = ‖v‖ = ‖gn − 0‖ ,

u =
v

r
=

gn − 0

‖gn − 0‖
,
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where ‖.‖ is a vector Norm. Following (Emerson and Owen, 2009) we add two sample

points

gn+1 = −scu,

gn+2 = 2gn + scu

with cu =
(
u
′
S−1u

)− 1
2
. Since cu is the inverse Mahalanobis distance of a unit vector

from gn in the direction of u, gn+1 places a new point near the zero vector when the

covariance S in direction v is smaller and further away when the covariance in that di-

rection is larger, thereby insuring that the zero vector is included in the convex hull of

{g (Yi, θ) , i = 1, . . . , n}. The second point gn+2 is included to maintain the original sample

mean since 1
n+2

∑n+2
i=1 gi = gn. The adjusted empirical likelihood function becomes

R̃ (θ) = sup

{
n+2∏
i=1

nwi|
n+2∑
i=1

wigi = 0,
n∑
i=1

wi = 1, wi > 0

}
(11)

and

W̃ (θ) = −2 log R̃ (θ) . (12)

Similar as in (9), (10) the explicit expressions for R̃ (θ) and W̃ (θ) are derived by using

Lagrange multipliers:

R̃ (θ) =

n+2∏
i=1

1

1 + λ′gi
, (13)

W̃ (θ) = −
n+2∑
i=1

log
{

1 + λ
′
gi

}
, (14)

while λ ∈ Rl+2 must satisfy:

n+2∑
i=1

gi
1+λ′gi

= 0. (15)

The con�dence interval for this can be constructed using the following Theorem.

Theorem 3. Let Y1, .., Yn ∈ Rd with some unknown distribution F0. Let θ0 be the true

parameter that satis�es EF0 [g (Y, θ0) = 0], where g is a vector valued function of dimension
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l, furthermore Σg = V arF0 [g (Y, θ0)] < ∞ with rank q > 0. Then as n → ∞ and for a

�xed value s we have

W̃ (θ0)
d→ χ2q

as n→∞.

Proof. See Appendix

4 Numerical Experiments

In order to investigate the feasibility of our estimation approach we propose the following

experiment. We replace the supposed agent based model by a simulation for which we have

the closed form of the data generating process. The advantage is that for any hypothesis

H : θ = θH we pose on the simulated moment samples, we can analytically derive the

underlying parameter setting γ̂a that corresponds to it and that can be compared to the

parameter setting γ̂ found by our proposed estimation procedure. In our experiment we

will simulate sample price paths following a Geometric Brownian Motion (GBM):

Pt = P0e
Xt ,

where Xt = (r− u2

2 )t+uWt (whereWt is a standard Brownian Motion) and the log returns

r∆t over an interval ∆t are normally distributed with N
((
r − u2

2

)
∆t, u2∆t

)
. Note, that

in this case the outcomes of the simulator are entirely governed by γ = (r, u) and the mean

and the variance of the simulated returns are functionally related over r and u. Following

our proposed estimation procedure we seek in this experiment for a con�guration γ̂ at

which we on average most likely observe the empirical moments ye. For simplicity we

consider here θH = ye =
(
µe, σ

2
e

)
the empirical mean and variance of the returns, that is

we seek

γ̂ = argmax
[
W̃γ (ye)

]
γ

.

In order to calculate W̃γ (ye) we �rst simulate n price paths with the parameter setting

γ = (r, u) and for each path we compute the sample mean and the variance of the return

distribution, resulting in a population
{
yi (γ) =

(
µiγ , var

i
γ

)
, i = 1 : n

}
, for which we solve
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the following the constrained maximization problem

R̃γ (ye) = sup

{
n+2∏
i=1

nwi|
n+2∑
i=1

wiyi (γ) = ye,

n∑
i=1

wi = 1, wi > 0

}

and �nally we get

W̃γ (ye) = −2 log R̃γ (ye)

and γ̂ is found by

max
γ=(r,u)

W̃γ (ye) .

Figure 1-8 depict the surface of W̃γ (ye) over a mesh (r, u), whereas Figure 5-8 plots

the surface W̃γ (ye) computed using a Monte Carlo variance reduction technique called

Common Random Numbers. In these pictures W̃γ (ye) is calculated for the hypothesis

ye = (0.015, 0.01) using n = 300 price samples over the period [0, T ] = [0, 1] . The moment

population is then calculated from the returns r4t with 4t = 1/100. Analytically we know

then for the hypothesis ye = (0.015, 0.01) =
((
r − u2

2

)
∆t, u2∆t

)
that the analytical op-

timal con�guration γ̂a = (2, 1). As it can be seen in both �gures, the optimal region of

W̃γ (ye) is around γ̂a = (2, 1) and its optimal point is indeed (2, 1), which can be explicitly

computed using an optimisation algorithm for max
γ=(r,u)

W̃γ (ye) . For Figure 1 we could re-

trieve successfully the optimal point γ̂a using a Genetic Algorithm (GA), while for Figure

5 a simple gradient decent method was su�cient. Summing up, while maximizing empiri-

cal likelihood of the GBM simulator on average to reproduce the empirical moments ye

we manage even to retrieve the exact analytical optimal con�guration γ̂ = γ̂a. The

following remark will give an explanation for this.

Remark 3. Given X1,...,Xn iid with mean µ and variance σ2 then the sample mean de�ned

as X̄ = 1
n

∑n
i=1Xi is a random variable with expectation

E
[
X̄
]

=
1

n

n∑
i=1

E[Xi] = µ

and the sample variance de�ned as S2 = 1
n−1

∑n
i=1

(
Xi − X̄

)2
is a random variable with

expectation

E
[
S2
]

= σ2.
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Figure 1. Empirical Likelihood Surface
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Figure 2. Empirical Likelihood Surface r-Axis View
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Figure 3. Empirical Likelihood Surface u-Axis View
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Figure 4. Empirical Likelihood Surface Bird Eye's View
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Figure 5. Empirical Likelihood Surface
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Figure 6. Empirical Likelihood Surface r-Axis View
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Figure 7. Empirical Likelihood Surface u-Axis View
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Figure 8. Empirical Likelihood Surface Bird Eye's View
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Since we maximize the likelihood of the average or expected return sample mean and

variance to be µe and σ
2
e , we have

E
[
X̄
]

= µ = µe

and

E
[
S2
]

= σ2 = σ2
e ,

that is our test estimation actually maximizes the likelihood of the return mean µ =(
r − u2

2

)
∆t and variance σ2 = u2∆t to be µe and σ

2
e .

As a consequence calibrating for ye = (0.015, 0.01) should give us the analytical solu-

tion γ̂a = (2, 1) and that is what we indeed �nd. Furthermore, we �nd max
γ=(r,u)

W̃γ (ye) = 0,

that means that our simulator observes the moments ye = (0.015, 0.01) at γ̂ = γ̂a = (2, 1)

with likelihood 1, that is with certainty.

5 Conclusions

Our proposed estimation procedure minimises the distance between the average simulated

moments and the empirical moments using likelihood as a distance measure and the under-

lying idea is to maximize the likelihood to observe the empirical moments with respect to

the con�guration of our AB model. In principal we execute a series of hypothesis tests with

a �xed hypothesis and varying data sets, generated at di�erent con�gurations. We have

tested the proposed approach in a simple setting using a GBM simulator, where we aimed

at maximizing the empirical likelihood of the GBM simulator on average to observe a given

empirical moment ye =
(
µe, σ

2
e

)
, which in this case is equivalent to directly estimating the

mean and variance of the GBM return distribution. Correspondingly the results of our

experiment show that the proposed procedure was capable to retrieve the exact analytical

optimal con�guration γ̂ = γ̂a as desired. Furthermore the displayed surface of the ob-

jective functionW̃γ (ye) was able to capture the underlying functional relationship of the

parameters r and u in the GBM even in the presence of Monte Carlo variance and there-
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fore is potentially useful in discriminating arbitrary AB models among di�erent parameter

settings. The latter and the extend to which W̃γ (ye) is capable to compare di�erent AB

models is subject to further research. Note, the limitations of W̃γ (ye) is closely related

to limitations of the optimisation algorithm used to �nd its optimal value. In general we

cannot expect the surface of W̃γ (ye) to be well behaved. It might have multiple optima,

indi�erence regions or discontinuities. The �rst two points imply that the considered AB

model has parameter regions at which its results are qualitatively indistinguishable and

the last point might correspond to algorithmic unstable regions. Therefore the quality

of the results obtained by the proposed AB estimation depends on the robustness of the

optimisation algorithm in use to �nd the best con�guration.
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Appendix

Before we come to the main proof of Theorem 3 we need to introduce some quantities

and a Lemma that will be needed later on. For the following let gn+2 = bngn + scu ,bn a

constant and:

S̃ =
1

n+ 2

n+2∑
i=1

gig
′
i,

g̃n =
1

n+ 2

n+2∑
i=1

gi,

and g∗ = maxi=1:n ‖gi‖, g̃∗ = maxi=1:n+2 ‖gi‖. Note for bn = 2 it is

g̃n =
1

n+ 2
[ngn + 2gn] = gn.

Furthermore the following magnitudes hold: i)1 g∗ = op

(
n

1
2

)
, ii)2 gn+1 = Op (1) and iii)3

gn = Op

(
n−

1
2

)
. It follows

gn+2 = Op

(
bnn
− 1

2

)≤ op
(
n

1
2

)
, bn ≤ o (n)

> op

(
n

1
2

)
, bn > o (n)

that is gn+2 and g̃∗ are of order op

(
n

1
2

)
as long as bn is of order o (n).

Lemma 1.

S̃ − S → 0

in probability as n→∞.

Proof.

S̃ =
1

n+ 2

[
n∑
i=1

gig
′
i + gn+1g

′
n+1 + gn+2g

′
n+2

]
=

1

n+ 2

[
nS + s2c2

uuu
′
+ (bngn + scu)2 uu

′
]

=
n

n+ 2
S +

s2c2
u + (bngn + scu)2

n+ 2
uu
′

1(Chen, 2008) p.22
2S → Σ in probability as n→ ∞, therefore is bounded above Op (1)
3(Qin and Lawless, 1994) p.19
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Since S converges in probability to Σg for n→∞, cu is of order Op (1) , s as a constant is

of order O (1) and gn is order of Op

(
n−

1
2

)
, the order of the last term is[

O (1)Op (1) +
(
Op

(
bnn
− 1

2

)
+O (1)Op (1)

)2
]
O
(
n−1

)
=

[
Op (1) +

(
Op

(
bnn
− 1

2

))2
]
O
(
n−1

)
=
[
Op (1) +Op

(
b2nn
−1
)]
O
(
n−1

)
= Op

(
n−1

)
+Op

((
bn
n

)2
)

= Op
(
n−1

)
+

{
op
(
n−1

)
, bn ≤ o (

√
n)

op

((
bn
n

)2)
, bn > o (

√
n) .

Therefore as long as bn is of order o (
√
n) the error term is of order4 Op

(
n−1

)
and as

n→∞, S̃ − S → 0 in probability.

The following proofs Theorem 3.

Proof. Without loss of generality let σ2
1 ≤ . . . ≤ σ2

m be the EV (Eigenvalues) of Σg =

V arF0 [g (Y, θ0)] with σ2
1 = 1 . For θ = θ0 using 1

1+x = 1 − x
1+x and λ̂ = λ/ρ, ρ = ‖λ‖ in

(8) we get:

0 = λ̂
′

n

∑n+2
i=1

gi
1+λ′gi

= λ̂
′

n

∑n+2
i=1 gi −

ρ
n

∑n+2
i=1

(
λ̂
′
gi

)2

1+λ̂′gi

≤ λ̂
′
gn (1 + bn/n)− ρ

n

∑n
i=1

(
λ̂
′
gi

)2

1+λ̂′gi

= λ̂
′
gn + n−1bnλ̂

′
gn −

ρ
n(1+ρg̃∗)

∑n
i=1

(
λ̂
′
gi

)2

= λ̂
′
gn +Op

(
bnn
− 3

2

)
− ρ

n(1+ρg̃∗)

∑n
i=1

(
λ̂
′
gi

)2

≤ λ̂
′
gn −

ρ(1−ε)
(1+ρg̃∗) +Op

(
bnn
− 3

2

)
.

The last inequality holds because
∑n

i=1

(
λ̂
′
gi

)2
≥ (1− ε)σ2

1 = (1− ε) for some ε > 0.

Therefore we get

ρ

(1 + ρg̃∗)
≤ λ̂

′
gn

1− ε
+Op

(
bnn
− 3

2

)
(16)

with

Op

(
bnn
− 3

2

)≤ op
(
n−

1
2

)
, bn ≤ o (n)

> op

(
n−

1
2

)
, bn > o (n)

since
λ̂
′
gn

1−ε is of order op

(
n−

1
2

)
it follows from equation (16)

ρ = λ = op

(
n−

1
2

)
(17)

4From the de�nition of o and O it follows: f = o (n) ⇒ f = O (n) and therefore o (n) +O (n) = O (n) .
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as long as bn = o (n). Using 1
1+x = 1− x− x2

1+x in (8) we have:

0 =
1

n+ 2

∑n+2
i=1

gi
1+λ′gi

= 1
n+2

∑n+2
i=1 gi

(
1− λ′gi +

(
λ
′
gi

)2

1+λ′gi

)

= 1
n+2

(∑n+2
i=1 gi − λ

∑n+2
i=1 gig

′
i +
∑n+2

i=1

gi

(
λ
′
gi

)2

1+λ′gi

)
. (18)

The last term is bounded above by norm:

1

n+ 2

n+2∑
i=1

gi

(
λ
′
gi

)2

1 + λ′gi
≤ max

i=1:n+2
‖gi‖

1

n+ 2

n+2∑
i=1

‖λ‖2 ‖gi‖2
∣∣∣1 + λ

′
gi

∣∣∣−1

=
(g̃∗)

n+ 2

n+2∑
i=1

‖λ‖2 ‖gi‖2
∣∣∣1 + λ

′
gi

∣∣∣−1
. (19)

From now on we use bn = 2 as in the de�nition of W̃ (θ0) and the order of equation (19)

becomes5

op

(
n

1
2

)(
op

(
n−

1
2

))2
Op (1) = op

(
n−

1
2

)
with equation (18) we get:

0 =
1

n+ 2

n+2∑
i=1

gi −
λ

n+ 2

n+2∑
i=1

gig
′
i + op

(
n−

1
2

)
therefore,

λ =

[
1

n+ 2

n+2∑
i=1

gi

]
/

[
1

n+ 2

n+2∑
i=1

gig
′
i + op

(
n−

1
2

)]
= g̃nS̃

−1 + op

(
n−

1
2

)
. (20)

Now using log (1 + Yi) = Yi − 1
2Y

2
i + ηi, bn = 2 and (20) in W̃ (θ0)

5As long as bn is of order o (n) we know from above ĝ∗ is of order op
(
n

1
2

)
, the order of λ is given

in equation (17). For θ = θ0 it is 1
n+2

∑n+2
i=1 ‖gi‖2 = 1

n

∑n
i=1 ‖gi‖

2 therefore 1
n

∑n
i=1 ‖gi‖

2 dF0 (yi) →´
Rd ‖g (y)‖2 dF0 (y) = V ar [g (y, θ0)] = Σg < ∞ for n → ∞ and with equation (15) the last two terms are
of order Op (1).
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W̃ (θ0) = 2
n+2∑
i=1

log
(

1 + λ
′
gi

)
= 2

n+2∑
i=1

λ
′
gi −

n+2∑
i=1

(
λ
′
gi

)2
+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)λ
′
g̃n − (n+ 2)λ

′
S̃λ+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)
(
g̃nS̃

−1 + op

(
n−

1
2

))′
g̃n − (n+ 2)λ

′
S̃λ+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)
[
g̃
′

nS̃
−1g̃n

]
+ 2 (n+ 2) op

(
n−

1
2

)
g̃n + (n+ 2)λ

′
S̃λ+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+ 2 (n+ 2) op

(
n−

1
2

)
gn + (n+ 2)λ

′
S̃λ+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+O (n) op

(
n−

1
2

)
op (gn) + (n+ 2)λ

′
S̃λ+ 2

n+2∑
i=1

ηi

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+O (n) op

(
n−

1
2

)
op

(
n−

1
2

)
+ (n+ 2)λ

′
S̃λ+ op (1)

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+ op (1) +O (n) op

(
n−

1
2

)
Op (1) op

(
n−

1
2

)
+ op (1)

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+ op (1) + op (1) + op (1)

= 2 (n+ 2)
[
g
′
nS̃
−1gn

]
+ op (1) .

Because W (θ0) = n
(
g
′
nS
−1gn

)
+op (1) , W̃ (θ0)−W (θ0)→ 0 in probability, since S̃ → S

in Lemma 1 and n
n+2 → 1 as n→∞. Furthermore it is shown in (Qin and Lawless, 1994)

that W (θ0)→ χ2
q in probability as n→∞, therefore we have W̃ (θ0)→ χ2

q .
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